LeetCode 300 Longest Increasing Subsequence

题目描述

Given an unsorted array of integers, find the length of longest increasing subsequence.

For example,

Given [10, 9, 2, 5, 3, 7, 101, 18],

The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

Your algorithm should run in O(n2) complexity.

Follow up: Could you improve it to O(n log n) time complexity?

Credits:
Special thanks to @pbrother for adding this problem and creating all test cases.


分析

定义一个数组s,s[i]用来定义从0…i的LIS,求解s[i+1]时,循环i次。时间复杂度是O(n2)。有更好的算法,能够到O(nlogn),过段时间研究+_+

O(n2)的伪代码如下:

// Let S[i] be OPT(i)
S[1] := 1
L := S[1]
for i from 2 to n
    S[i] := 1 // at least contain A[i]
    for j from 1 to i-1
        if A[j] < A[i] then S[i] := max( S[i], S[j]+1 )
    end
    L := max( L, S[i] )
end
return L

代码

    public int lengthOfLIS(int[] nums) {

        if (nums == null || nums.length == 0) {
            return 0;
        }

        int n = nums.length;

        int max = 1;

        int[] s = new int[n];
        Arrays.fill(s, 1);

        // 自底向上,动态规划求解
        for (int i = 1; i < n; i++) {
            for (int j = 0; j < i; j++) {
                if (nums[j] < nums[i]) {
                    s[i] = Math.max(s[i], s[j] + 1);
                }
            }
            max = Math.max(max, s[i]);
        }

        return max;
    }
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值